Birational geometry for the covering of a nilpotent orbit closure II

نویسندگان

چکیده

Let O be a nilpotent orbit of complex semisimple Lie algebra g and let π:X→O¯ the finite covering associated with universal O. In previous article [14] we have explicitly constructed Q-factorial terminalization X˜ X when is classical. this count how many non-isomorphic terminalizations has. We construct Poisson deformation over H2(X˜,C) look at action Weyl group W(X) on H2(X˜,C). The main result an explicit geometric description W(X).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birational geometry of symplectic resolutions of nilpotent orbits II

for a parabolic subgroup P ⊂ G. In Part I [Na 2], when g is classical, we have proved that any two symplectic resolutions of Ō are connected by a sequence of Mukai flops of type A or of type D. In this paper (Part II), we shall improve and generalize all arguments in Part I so that the exceptional Lie algebras can be dealt with. We shall replace all arguments of [Na 2] which use flags, by those...

متن کامل

Birational geometry and deformations of nilpotent orbits

In order to explain what we want to do in this paper, let us begin with an explicit example. Let O be the nilpotent orbit of sl(4,C) with Jordan type [3, 1] (under the adjoint action of G := SL(4,C)). We will denote by Xi,j,k the cotangent bundle T (G/Pi,j,k) of the projective manifold G/Pi,j,k where Pi,j,k is a parabolic subgroup of G with flag type (i, j, k). Then the closure Ō of O admits th...

متن کامل

Induced nilpotent orbits and birational geometry

Let G be a complex simple algebraic group and let g be its Lie algebra. A nilpotent orbit O in g is an orbit of a nilpotent element of g by the adjoint action of G on g. Then O admits a natural symplectic 2-form ω and the nilpotent orbit closure Ō has symplectic singularities in the sense of [Be] and [Na3] (cf. [Pa], [Hi]). In [Ri], Richardson introduced the notion of so-called the Richadson or...

متن کامل

Birational geometry of symplectic resolutions of nilpotent orbits

Let G be a complex simple Lie group and let g be its Lie algebra. Then G has the adjoint action on g. The orbit Ox of a nilpotent element x ∈ g is called a nilpotent orbit. A nilpotent orbit Ox admits a non-degenerate closed 2-form ω called the Kostant-Kirillov symplectic form. The closure Ōx of Ox then becomes a symplectic singularity. In other words, the 2-form ω extends to a holomorphic 2-fo...

متن کامل

Birational geometry of symplectic resolutions of nilpotent orbits Yoshinori

Let G be a complex simple Lie group and let g be its Lie algebra. Then G has the adjoint action on g. The orbit Ox of a nilpotent element x ∈ g is called a nilpotent orbit. A nilpotent orbit Ox admits a non-degenerate closed 2-form ω called the Kostant-Kirillov symplectic form. The closure Ōx of Ox then becomes a symplectic singularity. In other words, the 2-form ω extends to a holomorphic 2-fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.01.036